Utilization of Modeling and Simulation in Lower Extremity Injury Analysis

May 5, 2000

Jeffrey S. Augenstein, MD, PhD

University of Miami

Kennerly Digges, PhD

George Washington University

Outline

- Lump Mass Modeling 101
- Data Sources
- Upper Leg Injury Case Study
- Lower Leg Injury Case Study

Lumped Mass Modeling 101

$$\Delta V = a \times \Delta t$$

 $\Delta X = \frac{1}{2} \Delta V \times \Delta t = \frac{1}{2} a \Delta t^2$
 $a = F/m$; $\Delta X = \frac{1}{2} F/m \Delta t^2$

Degrees of Motion for Models

Lumped Mass Modeling Approach

Apply single degree relationships to:

X, Y, Z for Linear Displacements

φ, γ, η for Angular Displacements

Forces Are Not Constant With Displacement

Modeling Requires Force Vs. Displacement Relationships

Force = K (x) Hook's Law

• Torque = $k r(\phi)$

Modeling Requires More Than One Mass

- Add masses connected by joints
- Add geometric compatibility relationships

Add Lumped Masses Connected by Joints

Applicable Laws and Principles:

Newton's 1st Law; F = ma; $T = I\alpha$

Force & Torque Equilibrium; $\Sigma F = 0$; $\Sigma T = 0$

Force vs Displacement Relationships

Geometric Compatibility; Joint Constraints

Two Segments Connected by a Joint

Typical Joints for Modeling

Ball & Socket or Free

Slip With Rotation About Z Axis

Pin (Hinge)

Slip With Rotation About Y Axis

Euler

Slip With Complete Angular Freedom

Hybrid III

Dummy Model

17 Masses &

16 Joints

Input - Vehicle Acceleration vs Time & Force Displacement Relationships

Force Displacement Relationships

- Body segment surfaces represented by ellipsoids
- Vehicle surfaces represented by either:
 - Planes
 - Ellipsoids
 - Hyper-ellipsoids
- Contact forces represented by penetration of vehicle surfaces by body ellipsoids

Definition of Penetration

Definition of Penetration

Normal Force, F = f(d)

Friction Force = k(F)

Point of Maximum Penetration

Typical Penetration vs. Force Relationship

Penetration, δ - in.

Deformation, in.

Typical Penetration vs. Force Relationship

Penetration, δ - in.

Deformation, in.

Computer Reconstruction of Crashes

Alternative Models
Input Data
Sources of Data
Injury Criteria

- ATB lumped mass with string belts
- MADYMO lumped mass with FEM belts
 & contacts
- LSDYNA finite element with rigid skeleton

Comparison of Models

MODEL COMPUTER TIME

ATB PC 30 sec

MADYMO WORKSTATION 15 min

LSDYNA POWER 3-12 hrs
CHALLANGE

Approach to Reconstruction

- Use lumped mass models to gain insight into injury mechanisms
- Use cadaver tolerance data to interpret model predictions
- Use FEM models to study injury sensitivity of crash parameters to loads at locations where injury occurs

Input Data Needs for Crash Reconstruction

- Occupant Model
- Vehicle Interior Geometry
- Force Deformation, Friction and Hysteresis of Belts, Air Bag, and Other Contacts
- Crash Pulse (and Intrusion Time -Displacement)
- Initial Position of Occupant

Input Data Needs for Crash Reconstruction

- Occupant Model
- Vehicle Interior Geometry
- Force Deformation, Friction and Hysteresis of Belts, Air Bag, and Other Contacts
- Crash Pulse (and Intrusion Time -Displacement)
- Initial Position of Occupant

Occupant Model

- Validated models of hybrid III dummy available
- Scaling programs available for different size occupants
- No validated human model available
- Simulation is of a dummy not a human!

Input Data Needs for Crash Reconstruction

- Occupant Model
- Vehicle Interior Geometry
- Force Deformation, Friction and Hysteresis of Belts, Air Bag, and Other Contacts
- Crash Pulse (and Intrusion Time -Displacement)
- Initial Position of Occupant University of MIAMI

Vehicle Interior Geometry

Obtained by Direct Measurement

Input Data Needs for Crash Reconstruction

- Occupant Model
- Vehicle Interior Geometry
- Force Deformation, Friction and Hysteresis of Belts, Air Bag, and Other Contacts
- Crash Pulse (and Intrusion Time -Displacement)
- Initial Position of Occupant

Force Deformation Properties

 Library of properties available from NHTSA research testing

 NCAP and compliance tests of vehicles used to "tune" properties of knee restraints, air bags, and belts

NHTSA Steering Column Dynamic Test

NHTSA Knee Restraint Static Test

Input Data Needs for Crash Reconstruction

- Occupant Model
- Vehicle Interior Geometry
- Force Deformation, Friction and Hysteresis of Belts, Air Bag, and Other Contacts
- Crash Pulse (and Intrusion Time -Displacement)
- Initial Position of Occupant

NCAP and Compliance Tests

- Crash pulse
- Belt slack
- Intrusion history
- Belt and air bag response
- Knee restraint response

NCAP - 35 mph

Belt Spool Out NCAP

NCAP Underside

30 mph Compliance Test

NCAP and Compliance Tests Other Applications

- Provide insights into dummy kinematics
- Provide insights into vehicle performance
- Compliance tests provide air bag response without belts

Input Data Needs for Crash Reconstruction

- Occupant Model
- Vehicle Interior Geometry
- Force Deformation, Friction and Hysteresis of Belts, Air Bag, and Other Contacts
- Crash Pulse (and Intrusion Time -Displacement)
- Initial Position of Occupant

Initial Position

- Driver Interviews
- Crash Investigation
 - •Including Louie the Leg
- Trial & Error Modeling

Input Data Needs for Crash Reconstruction - Summary

- Occupant model
- Vehicle interior geometry
- Force deformation, friction and hysteresis of belts, air bag, and other contacts
- Crash pulse (and intrusion time displacement)
- Initial position of occupant

What Lumped Mass Modeling Can Do

- Insight into occupant (dummy) kinematics
- Insight into injury mechanisms
- Sensitivity of crash parameters to modify injury risk
- Direction and approximate magnitude of applied forces

What FEM Models Can Do

- More accurately model human skeletal structure
- More accurately predict the joint forces that produce injury
- More accurately predict the stresses and strains that produce injury

Injury Assessment Curves for Axial Compressive Femur Force Measured With Hybrid III-type Adult Dummies

Case 920027 Upper Leg Injury

Acetabulum Fracture-Dislocation

Why not a Femur Fracture?

Case 92-027 Scene Diagram

Vehicle to barrier crash

Frontal impact

Construction zone, driving on wrong side of barriers

Clear, dry, dark

Delta-V = 30 mph

Crash Scene - Approach

Crash Scene - Approach

Crash Scene - Approach

New 1992 Volvo

Case Vehicle - 1992 Volvo

Use Damage to
Calculate
Crash Severity

 $\overline{\text{Delta-V}} = 30 \text{ MPH}$

Case Vehicle - 1992 Volvo

- 1990 Volvo 740
 GL
- PDOF 12 O'clock
- Delta V 36.5
 mph

Driver

- 29 y/o male
- Firefighter
- 73" tall, 208 lbs.
- Air bag deployed
- Unbelted
- High suspicion criteria

Injury Overview

- Abrasions, Right Forearm, Flank AIS 1
- Contusions, Right Forearm, Left Thigh –
 AIS 1
- Lacerations, Scalp, Right Forearm AIS
- Fracture, Right Acetabulum AIS 3
- Fractures, Left Ribs 5,6,7,8 AIS 3

X-Ray of Principal Injury

Dislocation-Head of Right Femur AIS -3

Case Vehicle Interior

- Steering wheel deformity 4.5"
- Intrusions:
 - L Toe Pan 4"
 - Center Console 5"
 - L. floor 4"

Vehicle Interior-Air Bag Deployed

Vehicle Knee Panel

Location of Right Leg

Vehicle Knee Panel

Right Knee Contact with Knee Restraint

NCAP Test of 1991 Volvo

Ford LTD Into a Pole at 30 MPH

Reconstruction - No Intrusion

Applied Lump Mass Modeling

VOLVO RECONSTRUCTION TIME (MSEC)

Adducted Injury -Dislocation

THIGH FLEXED AND ABOUCTED

- FRACTURE OF FEMORAL SHAFT AND/OR CONDYLAR FRACTURES
- DISLOCATION OF PROXIMAL FEMUR ANDIGH SHEARED HEAD OF FEMUR

THIGH FLEXED AND ADDUCTED

- ACETABULAR FRACTURE OR
- POSTERIOR DISLOCATION OF FEMUR

Injury Mechanism

Direct loading of chest

 Axial loading with external rotation of right hip

Hospital Data

LOS – 17 days

Operative procedure: ORIF of right acetabulum

Hospital charges: \$47,003.08

Discharged home

Conclusions and Summary

- Air bag mitigated life threatening chest injuries.
- Knee protection good
- Lower extremity exposure to injury still high
- Adducted right leg increased vulnerability to dislocation

Tibia Tolerance Mertz Criteria

Axial Compression (50th %) - 8000 N

- 5th % 5104 N
- 95th% 9840 N

Ankle Injury Tolerance Malleolar Fracture

- "The Role of Axial Loading in Malleolar Fracture", Funk, Tourret, George, and Crandall, SAE 2000-01-0155
- Produced malleolar fracture from axial impacts of cadaver feet with 16 cm of intrusion
- Varied initial foot position
- Observed subsequent inversion or eversion
- Results ----

Cadaver Test Results

Initial Position

Direction of Bending

Location of

Force at

10° Inversion

Inversion

Fracture Lateral

Fracture **5473N**

30° Pf

Eversion

Medial

7929N

Neutral

Eversion

Medial

7349N

Eversion

Lateral

Medial

Lateral

Medial

Case 93-020 Scene Diagram

Car-to-Car Crash

Frontal Offset

Rural 2-Lane Road

Clear, Daylight

Passing Maneuver

Case Vehicle

Frontal Offset 1 O'clock 20° Oblique DeltaV- 32 mph 1993 Saturn SC2

POV - Plymouth Minivan (1992)

Case Vehicle

1" of Left Toe Pan Intrusion

Vehicle Interior

Steering Wheel Removed by Rescue Squad

Case Vehicle Driver

53 YO Female 5'2"; 205 lbs.

Did not meet trauma criteria

Driver Injuries

Liver Lac - AIS 2
Rib Fx - AIS 2
Tear, Renal Artery AIS-3
Burn Right Arm - AIS-2
Open Fx R. Ankle - AIS-2
Open Fx. L Ankle - AIS-2

Driver Injuries

Liver Lac - AIS 2 Rib Fx - AIS 2

Tear, Renal Artery AIS-3

Burn Right Arm - AIS-2

Open Fx R. Ankle - AIS-2

Open Fx. L Ankle - AIS-2

Chest Injuries

Liver Laceration - AIS 2 Rib Fracture - AIS 2

Apply Lumped Mass Model -

- 1 Examine Chest Loading by 2-Point Belt
- 2 Examine the Loading of Lower Limb Injuries

Computer Reconstruction of Occupant Loading

- Input Vehicle Acceleration
- Model Occupant Using ATBModel
 - Lumped Mass Model (Like MADYMO)
- Model With Air Bag & Without Intrusion
- Add Intrusion
- Retain Air Bag Forces, but Remove it Graphically to Show Driver Kinematics

Occupant Motion -Lower Limbs

Right Ankle Injuries

Right Ankle Injuries

Right -Open Pilon Fracture University of MIAMI Dorsiflexion Mode

Vehicle Brake Pedal Deformation

2" Lateral Shift

1" Toepan Intrusion

Right Leg Abrasions

Locating Lower Limbs

Right Limb Contacts

Evidence of Bracing

Case Simulation Results

Right Ankle Injury
Caused by Severe
Bracing and Brake Pedal
Loading

Right - 48° dorsiflexion Tibia force = 11.2 kN

Left Ankle Injury

Left - Open Fracture/dislocation Talo-Calcaneo-navicilar Joint Eversion Mode

Force Vector in Car-to-Car Offset Crash

Crash Pulse Determination

Car-to-Car Offset Frontal Crash Accelerations

Longitudinal Pulse

Lateral Pulse

Computer F-E Model of Human Lower Limbs

- FEM Model of Dummy
- Validation
- FEM Model of Human Limbs
- Validation
- Combine Models
- Apply to Injury Mechanisms

Dummy/Leg FEM Model in Frontal Offset Crash

Dummy/Leg FEM Model in Frontal Offset Crash

Left Foot Simulation

FIIWA/NIITSA

National Crash Analysis Center

Case Study
Left Foot Isolation
Injury Sustained: Open
Eversion Fracture

Case Simulation Results

Left ankle - Eversion

- High axial load
- Crash pulse with lateral component
- Uneven floor

Tibia force = 8.6 kN Left - 53° Eversion

Summary of Injuries & Causes

- Right ankle dorseflexion from braking
- Left ankle eversion from axial load, lateral component in crash pulse, & uneven floor
- Liver shoulder belt loading
- Abdominal aorta bracing

Principal Findings

- Shoulder belts w/o lap belts induce liver injuries
- Eversion injuries are possible without significant toepan intrusion
- Lateral acceleration acts to increase vulnerability of ankle joint to inversion/eversion

Conclusions

- Crash reconstruction improves understanding of injury mechanisms
- Application of crash tests and analysis aid in understanding injuries
- Eversion injuries can occur with no intrusion
 - High Axial Load
 - Lateral Acceleration
 - Uneven floor